

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 6
COURSE NAME: INORGANIC CHEMISTRY	COURSE CODE: ICH602S
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEME	NTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER(S)	DR EUODIA HESS
MODERATOR:	PROF HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly.
4.	All written work must be done in blue or black ink and sketches can
	be done in pencil.
5.	No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

List of Useful Constants Periodic Table

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page, list of useful constants and Periodic Table)

QUESTION 1: Multiple Choice Questions

[40]

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.
- 1. How many electrons are there in the **third** shell (principal energy level) of the atom with atomic number **23**?
 - A. 11
 - B. 8
 - C. 3
 - D. 10
- 2. How many electrons are there in the "p" orbitals of the **last** shell (principal energy level) of silicon, atomic number 14?
 - A. 4
 - B. 3
 - C. 0
 - D. 2
- 3. Which of the following is the correct order for electrons filling in orbitals?
 - A. 2p, 3s, 3p, 3d
 - B. 3p, 4s, 3d, 5s
 - C. 1s, 2s, 2p, 2d
 - D. 3s, 3p, 4s, 3d
- 4. A lithium atom has an atomic number of 3 and a mass of 7. The number of electrons which it has in the 1st shell (principal energy level) is ______.
 - A. 7
 - B. 3
 - C. 1
 - D. 2

5. When $Li_{6.94}^3$ loses its single 2 nd shell (principal energy level) electron, its electronic structure resembles that
A. Boron
B. Hydrogen
C. Helium
D. Neon
6. Bond created by overlapping of one modified orbit on another orbit is known as
A. Sigma bond
B. pi bond
C. Covalent bond
D. Dative bond
7. Molecular structure of SF ₆ is
A. octahedral
B. square planar
C. tetrahedral
D. trigonal bipyramidal
8. In Al ₂ Cl ₆ , the number of electron pairs donated by each chloride ion are
A. 1
B. 2
C. 4
D. 6
9. Number of bonding pairs of electrons in water H ₂ O is
A. 1
B. 2
C. 3
D. 4

10. What is the hybridisation of the carbon atoms in ethyne, C_2H_2 ?
A. <i>sp</i>
B. sp^2
$C. sp^3$
D. sp^3d
11. What is the definition of an sp^3 hybrid orbital?
A. It contains one s atomic orbital and three p atomic orbitals.
B. It contains one-third s atomic orbital and two-thirds p atomic orbitals.
C. It contains one-fifth s atomic orbital and four-fifths p atomic orbitals.
D. It contains one-quarter s atomic orbital and three-quarters p atomic orbitals
12. What is the formal charge of the oxygen atom in H_2O ?
A. +3
B. +1
C2
D3
13. What is the major attraction between water molecules in the solid physical state?
A. Dipole-dipole
B. Hydrogen bonds
C. Electrostatic attraction
D. Physical entanglement of molecules
14. Which of the bonds, shown by the dash, has the greatest polarity?
A. H-Cl
B. H-OH
C. H-SH
D. H-NH ₂
15. In which of the following compounds does ionic bonding predominate?
A. NH₄Cl
B. LiBr
C. CH ₄
D. CO ₂
Page 4 of 8

16. Ions which are produced from ligands are
A. Cations
B. Anions
C. Complex ions
D. All of them
17. In a face centred cubic lattice, the number of nearest neighbours for a given lattice point is
A. 6
B. 4
C. 8
D. 12
18. The molecular geometry of SO_3^{2-} as predicted by VESPR theory is
A. bent
B. tetrahedral
C. square planar
D. triangular pyramidal
19. In a comparison with s-block elements, melting points of transition elements are
A. Higher
B. Lower
C. Same
D. Constant
20. Due to ligands' action of splitting colour of transition metal compound, this change occurs a
A. d-orbital
B. p-orbital
C. s -orbital
D. f-orbital

SECTION B:	[60]
QUESTION 1: 1.1 Use the VSEPR model to predict the geometry of the following molecules and ions. a) AsH ₃ b) OF ₂ c) AlCl ₄ d) l ₃ ⁻ e) C ₂ H ₄	[20] (10)
 1.2 Predict whether each of the following molecules has dipole moment and give an explanation for each. a) BrCl b) BF₃ (trigonal planar) c) CH₂Cl₂ (tetrahedral) 	(6)
1.3 Describe the hybridization state of phosphorus in PBr ₅ .	(4)
QUESTION 2: 2.1 Which of the following can form hydrogen bonds in water and why? CH ₃ OCH ₃ ; CH ₄ ; F ⁻ ; HCOOH; Na ⁺	[10] (2)
2.2 When silver crystallizes, it forms face-centered cubic cells. The unit cell edge length is 409 pm. Calculate the density of silver.	(8)
QUESTION 3: 3.1 Write the systematic names of the following coordination compounds: a) Ni(CO) ₄ b) NaAuF ₄ c) K ₃ [Fe(CN) ₆] d) [Cr(en) ₃]Cl ₃	[20] (8)
 3.2 What are the geometries of the following two complexes? a) [AICl₄]⁻ b) [Ag(NH₃)₂]⁺ 	(2)
 3.3 Write the formula of each of the following coordination compounds: a) Tetraammineplatinum(II) chloride b) Sodium hexacyanoferrate(III) c) Tris(ethylenediamine)platinum(IV) sulfate d) Diamminesilver(I) nitrate e) Potassium diaquadioxalatocobaltate(III) 	(10)
QUESTION 4: 4.1 Calculate the amount of energy (in kJ) needed to heat 346 g of liquid water from 0°C to 182°C. Assume that the specific heat of water is 4.184 J/g· °C over the entire liquid range and that the specific heat of steam is 1.99 J/g· °C ($\Delta H_{vap} = 40.79 \text{ kJ/mol for water}$).	[10]

END OF EXAMINATION

USEFUL CONSTANTS:

Gas constant, R = $8.3145 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.083145 \text{ dm}^3 \cdot \text{bar} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L atm mol}^{-1} \cdot \text{K}^{-1} = 0.08206 \text{ L}$

 $1 \text{ Pa} \cdot \text{m}^3 = 1 \text{ kPa.L} = 1 \text{ N} \cdot \text{m} = 1 \text{ J}$

1 atm = 101 325 Pa = 760 mmHg = 760 torr

Avogadro's Number, $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Planck's constant, $h = 6.626 \times 10^{-34} \text{ Js}$

Speed of light, $c = 2.998 \times 10^8 \text{ ms}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

_			-		_														
18	He 4.00260	10	Ze	20.179	18	Ar	39.948	98	Kr	83.8	54	Xe	131.29	98	Rn	(222)	118	Uuo	
	17	6	1	15.9994 18.9984	17	Ü	35.453	35	Br	79.904	53	=	126.9	85	At	(210)			
	16	∞	0	15.9994	16	S	32.06	34	Se		52	Te	127.6	84	Po	(503)	116	Uuh	
	15	7	Z	14.0067	15	Ы	30.9738	33	As	74.9216	51	Sp	121.75	83	Bi	208.908			
	14	9	Ü	12.011	14	Si	28.0855	32	g		20	Sn	69'811	82	Pb	207.2	114	Uuq	
	13	5	B	10.81	13	Al	15	31	Ga	69.72	49	Ę	114.82	81	E	204.383			
		L					12	30	Zn	65.38	48	ರ	112.41	08	Hg		112	Unb	(569)
							11	29	Cu	63.546	47	Ag	107.868	16	Au Hg	196.961	111	Unn	(272)
							10	28	Z	58.69	46	Pd	106.42	78		195.08		Unn	(566)
							6	27	ට	58.9332	45	Rh	102.906	11	Ir	192.22	109	Mt	(268)
							∞	26	Fe	55.847	44	Ru	101.07	92	S	190.2	108	Hs	(265)
							7	25	Mn	54.9380	43	Lc	(86)	75	Re	186.207	107	Bh	(264)
							9	24		51.996	42	Mo	95.94	74		183.85	106	S	(263)
							5	23	>	50.9415 5	41	SP	92.9064	73	Ta	180.948	105	Dp	(262)
							4	77	Ē	47.88	40	Zr	91.22	7.7	Ht	178.49	104	R	(261)
						Ĭ	3	21	Sc	44.9559	39	>	88.9059	71	7	174.967	103	Ľ	(260)
	2	4	Be	9.01218	12	Mg	24.305	20	C	40.08	38	Sr	87.62	99	Ba	137.33	88	Ra	226.025
-[-	H 1.00794	3	<u>:</u>	6.941	11	RZ.	22.9898 24.305	19	¥	39.0983	37	Rb	85.4678	55	ű	132.905	87	Fir	(223)

Canthanides:	27	58	50	9		69	63	64	84	99	129	89	69	70
	5	,	,			1	3	5	3		5	3	5	2
	La	ပီ	Pr	PN	Pm	Sm	Eu	9	Sm Eu Gd Tb	Š	Dy Ho Er Tm	臣	Tm	Λp
	138.906	140.12	140.908			150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04
							1							
Actinides:	68	90	91	92	93		95	96	97	86	66	100	101	102
	Ac Th Pa U Np	Ac Th	Pa	D	aZ Z	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	2°
	227.028	232.038	231.036	238.029	237.048		(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)

Actinides: